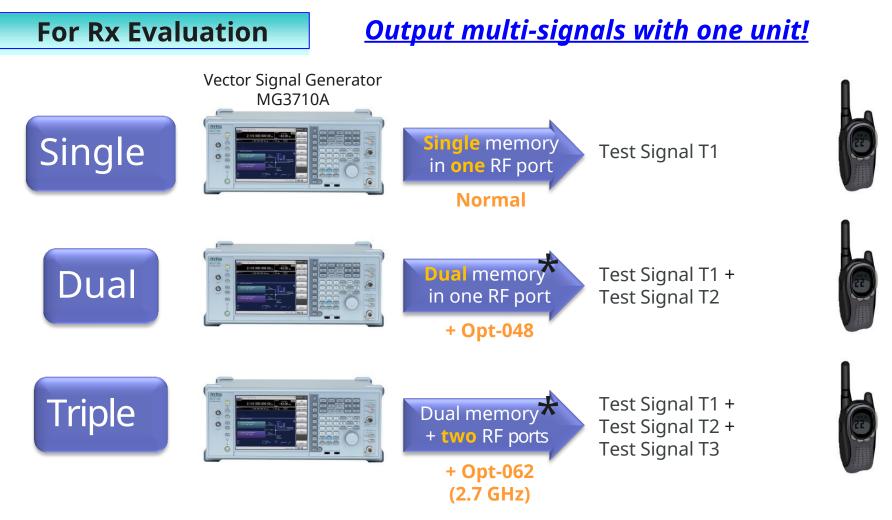
Product Introduction

TETRA Rx Test Solution

Vector Signal Generator MG3710A Vector Signal Generator MS2830A-020/021


Reference Specifications

ETSI EN 300 394-1 V3.3.1(2015-04) / Part1: Radio

ETSI TS 100 392-2 V3.6.1(2013-05) / Part2: Air Interface

May. 2016

[Anritsu] TETRA Rx Test Solution

***Combination of Baseband Signal option**: (Two internal ARB memories)

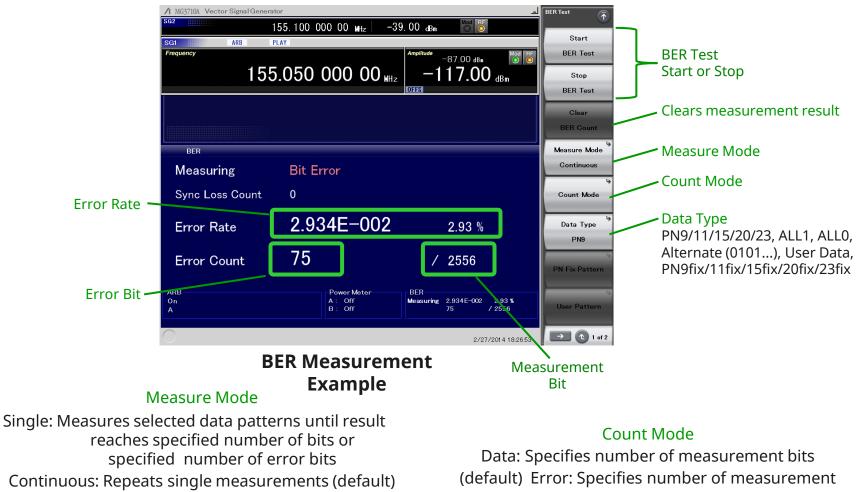
Selects two waveform patterns per RF output for setting mutual frequency offset, level offset, delay time, etc., to output two signals from one RF port.

Frequency (recommended range: $\pm 60 \text{ MHz}$) and level (CN: $\pm 80 \text{ dB}$) can also be set at the screen.

Note: For details, refer to the TETRA standard.

TETRA	Receiver test items	Signal	Generator		
EN 300 394		Wanted Signal	Unwant	ted Signal	
7.2.2 9.2	Nominal error rates	T1 (Static, Fading)			
7.2.3	Reference sensitivity performance	T1 (Static, Fading)			T1: Test signal T1 (TETRA wanted signal, phase
7.2.4	Reference interference performance	T1	T2		modulation) T2: Test signal T2 (TETRA
7.2.5	Blocking characteristics	(Fading) T1	(Interference)	T3	interferer)
9.5 7.2.6		(Static) T1		(Interference) T3	13: Test signal 13
9.6	Spurious response rejection	(Static)		(Interference)	(unmodulated interferer)
7.2.7 9.7	Intermodulation response rejection	T1 (Static)	T2 (Interference)	T3 (Interference	

BER (Bit Error Rate) measurement is supported by the BER Measurement function of the Vector Signal Generator. MER (Message Error Rate) measurement is not supported.


Fading: User can create Fading pattern by using Fading IQproducer (Option).

[Anritsu] TETRA Rx Test Solution

Built-in BER Measurement Function (Opt-021)

Endless: Measures data until result reaches upper

limit of measurement count bit

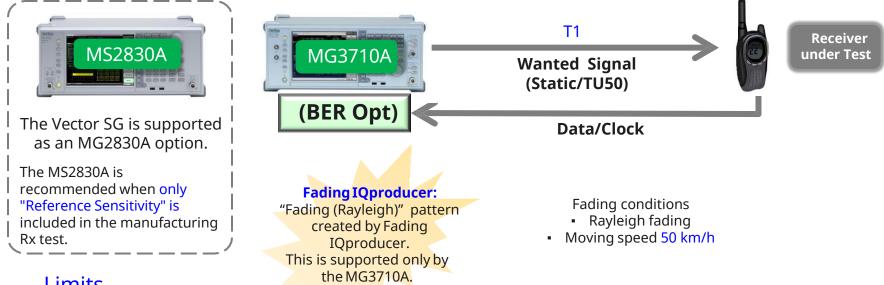
[Anritsu] TETRA Rx Test Solution

Test Signals

Note: For details, refer to the TETRA standard.

Measures transmitter and receiver

(Specified by EN 300 394 5.3 Radio Test Signals)

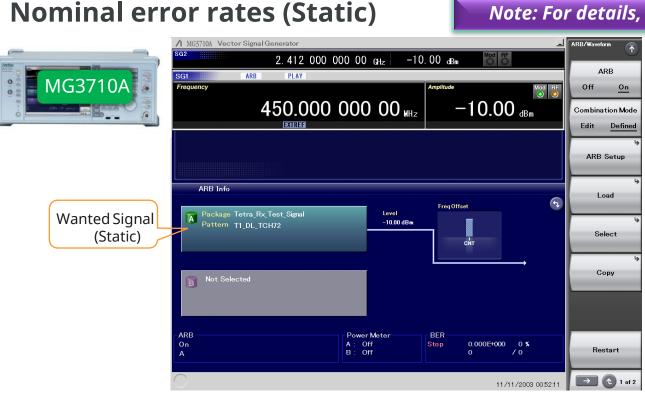

Test Signals			Cont	tents				
	The T1 signal sequence shall comply with the TETRA air interface multiframe, frame and slot/burst/sub burst structure and is the wanted signal transmitted by the test system during frames 1 to 17 in all receiver tests. The modulation type shall be π/4-DQPSK or π/8-D8PSK (where supported). The information transmitted by the test system in frame 18 of T1 is used for test control purposes.	MS Testing	Frame 18 Burst type synchronization Frame 1~17 Channel type 0 1 2 3 4	Block 1 BSCH Burst type normal normal normal synchronization normal	Block 2 BNCH/T Block 1 TCH/7,2 SCH/F BSCH TCH/2,4, N	SCH/HD	Broadcast Block AACH AACH AACH AACH AACH AACH AACH	(1)
T1		BS Testing	Frame18 Channel type 8 Frame 1~17 Channel type 7 8 9 10 11	Burst type normal Burst type normal normal normal normal control	Block 1 / Sub slot	Block 2 CH/F 1 Block 2 / Sub CH/7,2 CH/F 2,4, N = 1 SCH/HU	slot 2	
Т2	The phase modulated test signal T2 is a TETRA signals, but with all modulating sequence							
ТЗ	Test signal T3 is an unmodulated conti	nuous sir	nusoidal radio	signal. T3 is u	sed as an unwa	anted (unm	nodulated) si	gnal.
T4 (3)	unsupported.							

Anritsu is now discussing to Implement the Tetra Release 2 about modulation type π /8-D8PSK and QAM.

Nominal error rates

Note: For details, refer to the TETRA standard.

Measures the receiver performance under nominal channel conditions.

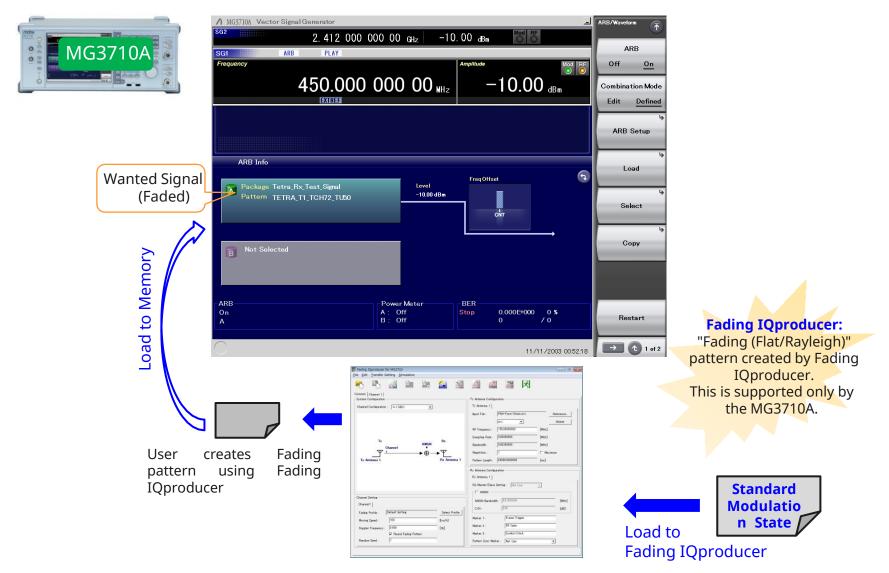

Limits

for MS/BS receiver, class A

Test Type	Channel type	Logical channel	Propagation condition	Signal level (dBm)	Interferer level (dBm)	Spec. BER or MER %	Test limit BER or MER %	Minimum sample size
Nominal error	1	TCH/7,2	TU50	-85		0,4	0,448	3 600 000
Nominal error	1	TCH/7,2	STAT	-20		0,1	0,122	170 000

Nominal channel

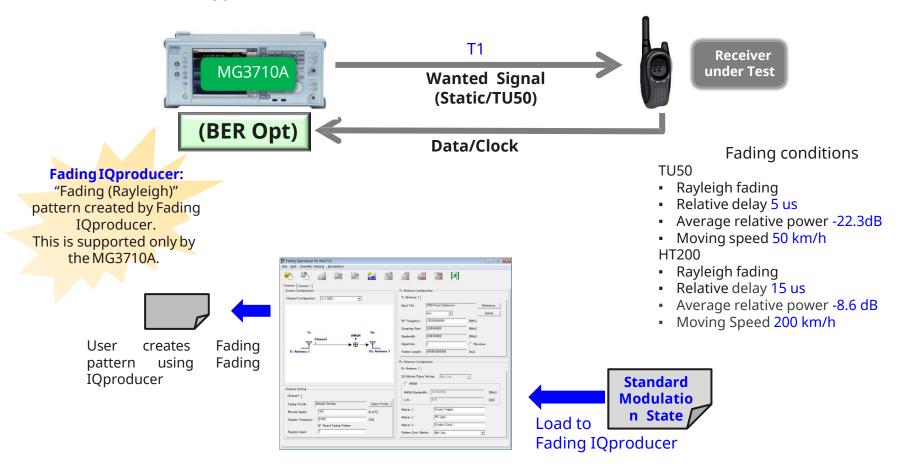
conditions are defined as a received signal level \geq -85 dBm with no interference under both static and fading conditions



Note: For details, refer to the TETRA standard.

Choose TETRA signal you want from the list.

Package Name	Pattern Name	Туре	Status
Tetra_Rx_Test_Signal	T1_DL_SCH_F	A	Normal
	T1_DL_SCH_F_Burst	A	Normal
	T1_DL_SCH_HD	A	Normal
	T1_DL_SCH_HD_Burst	A	Normal
	T1_DL_TCH24	A	Normal
	T1_DL_TCH24_Burst	A	Normal
	T1_DL_TCH72	A	Normal
	T1_DL_TCH72_Burst	A	Normal
	T1_UL_SCH_F	A	Normal
	T1_UL_SCH_HU	A	Normal
	T1_UL_STCH	A	Normal
	T1_UL_TCH24	A	Normal
	T1_UL_TCH72	A	Normal


Nominal error rates (TU50)

Reference sensitivity performance

Note: For details, refer to the TETRA standard.

The minimum required reference sensitivity performance is specified for V+D equipment according to test condition, logical channel, propagation condition, BS transmission mode, the receiver class, modulation type and channel bandwidth.

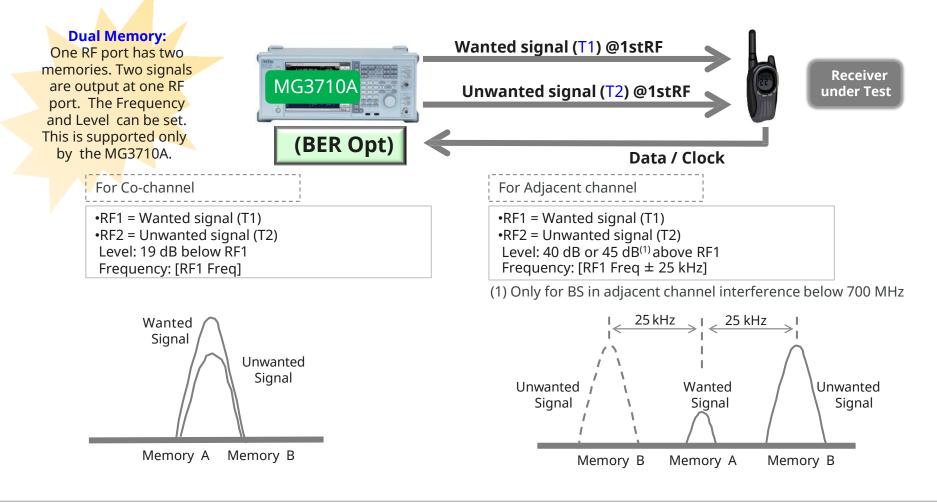
Reference sensitivity performance

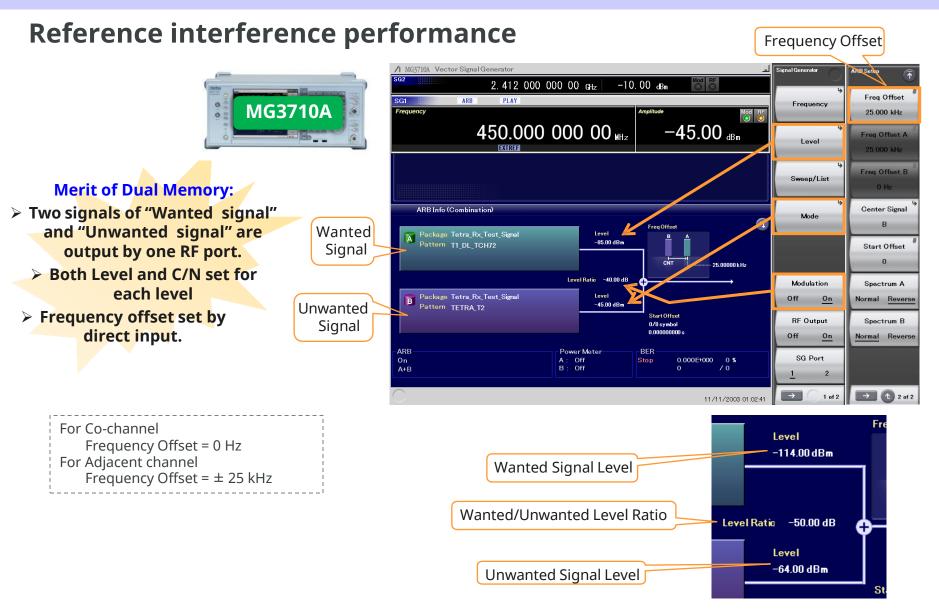
Note: For details, refer to the TETRA standard.

Limits

MS receiver minimum reference sensitivity

Test Type	Channel type	Logical channel	Propagation condition	Signal Ievel (dBm)	Interferer level (dBm)	Spec. BER or MER %	Test limit BER or MER %	Minimum sample size
Sensitivity	2	SCH/F	TU50	-103 (-97)		8	8,96	6 600
Sensitivity	2	AACH	TU50	-103 (-97)		10	11,2	6 600
Sensitivity	3	BSCH	HT200	-103		11	12,32	4 800
Sensitivity	3	SCH/HD	HT200	-103		11	12,32	4 800
Sensitivity	4	AACH	HT200	-103		17	19,04	3 000
Sensitivity	4	TCH/2,4 N = 1	HT200	-103		1,1	1,232	1 290 000


BS receiver minimum reference sensitivity


Test type	Channel type	Logical channel	Propagation condition	Signal level (dBm)	Interferer level (dBm)	Spec. BER or MER %	Test limit BER or MER %	Minimum sample size
Sensitivity	8	SCH/F	TU50	-106 (-100)		11	12,32	6 600
Sensitivity	9	STCH	TU50	-106		9	10,08	6 600
Sensitivity	10	TCH/2,4 N = 1	HT200	-106		1,3	1,456	45 000
Sensitivity	11	SCH/HU	HT200	-106		9,5	10,64	5 000

Reference interference performance

Notes: For details, refer to the TETRA standard.

The minimum required reference interference performance (for co-channel C/Ic or adjacent channel C/Ia) is specified for V+D equipment with phase modulation according to test condition, channel type, propagation condition and the receiver class of the equipment.

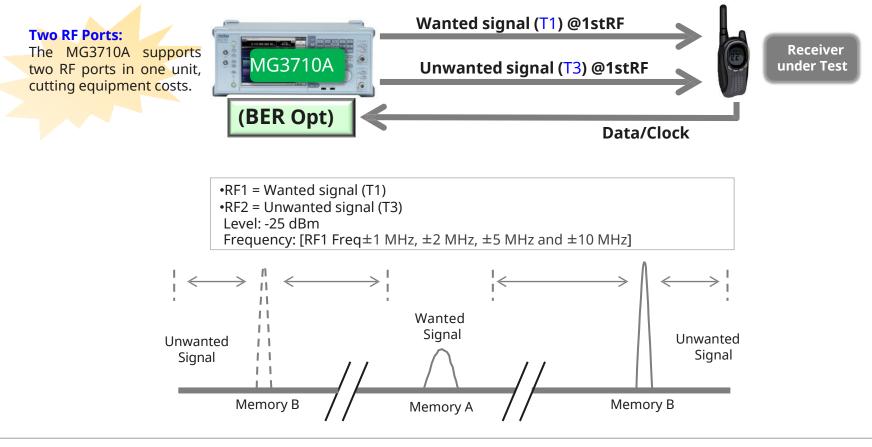
Reference interference performance

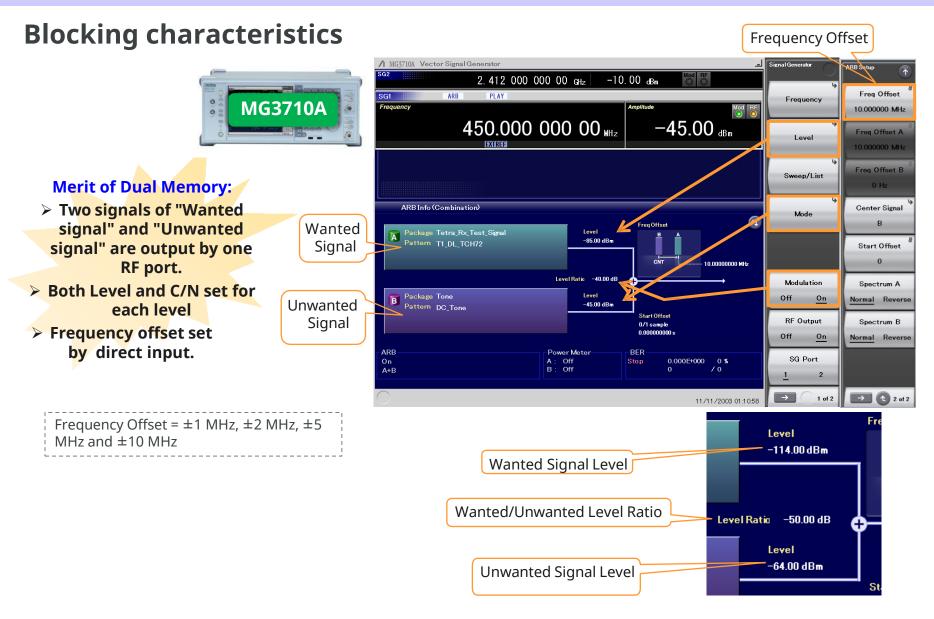
Notes: For details, refer to the TETRA standard.

Limits

For MS receiver

Test Type	Channel type	Logical channel	Propagation condition	Signal level (dBm)	Interferer level (dBm)	Spec. BER or MER %	Test limit BER or MER %	Minimum sample size
Co-channel interference	2	SCH/F	HT200	-85	-104	9,2	10,304	7 000
Adjacent channel interference	2	SCH/F	TU50	-100 (-94)	-60 (-64)	6,5	7,280	8 000


For BS receiver


Test type	Channel type	Logical channel	Propagation condition	Signal level (dBm)	Interferer level (dBm)	Spec. BER or MER %	Test limit BER or MER %	Minimum sample size
Co-channel interference	8	SCH/F	HT200	-85	-104	9,2	10,30	7 000
Adjacent channel interference	8	SCH/F	TU50	-103 (-97)	-58 (-62) (see note)	6	6,72	9 000

Blocking characteristics

Note: For details, refer to the TETRA standard.

Measures the capability of the receiver to receive a modulated wanted input signal in the presence of an unwanted unmodulated input signal on frequencies other than those of the spurious responses or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit.

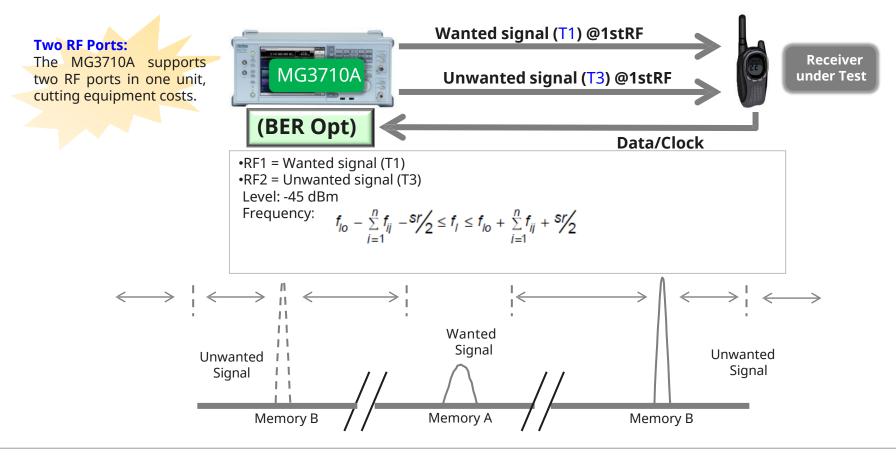
Blocking characteristics

Note: For details, refer to the TETRA standard.

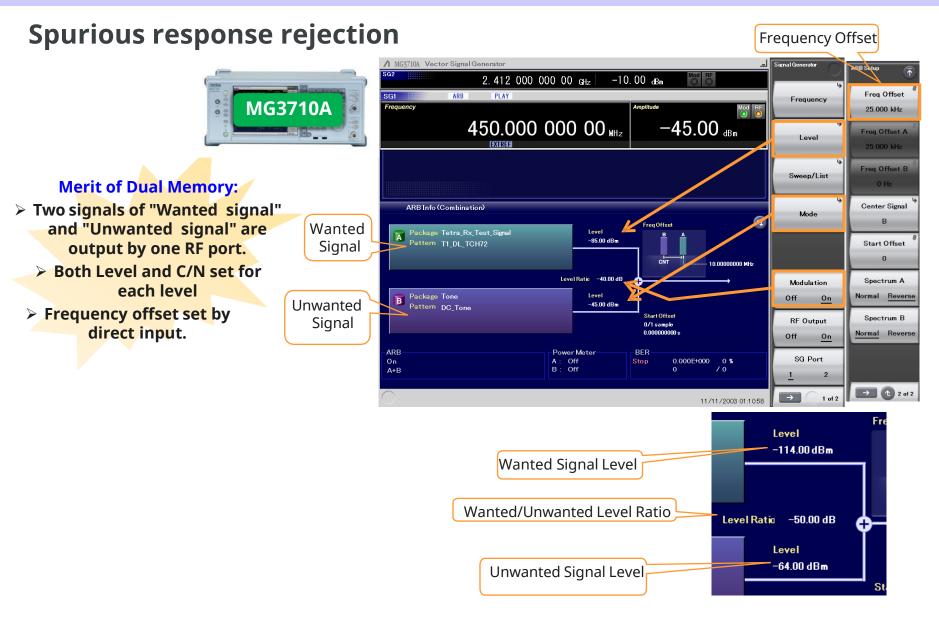
Limits

For MS receiver

Test Type	Channel type	Logical channel	Propagation condition	Signal level <mark>(</mark> dBm)	Interferer level (dBm)	Spec. BER or MER %	Test limit BER or MER %	Minimum sample size
Blocking	1	TCH/7,2	STAT	-109	-25	3,5	4,270	5 000


r	
For BS receiver	1
FOI DS leceivel	
	 '

Test type	Channel type	Logical channel	Propagation condition	Signal level (dBm)	Interferer level (dBm)	Spec. BER or MER %	Test limit BER or MER %	Minimum sample size
Blocking	7	TCH/7,2	STAT	-112	-25	3,0	3,66	5 800


Spurious response rejection

Note: For details, refer to the TETRA standard.

Measures the capability of a receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted unmodulated signal at any other frequency at which a response is obtained.

Incitsu envision : ensure

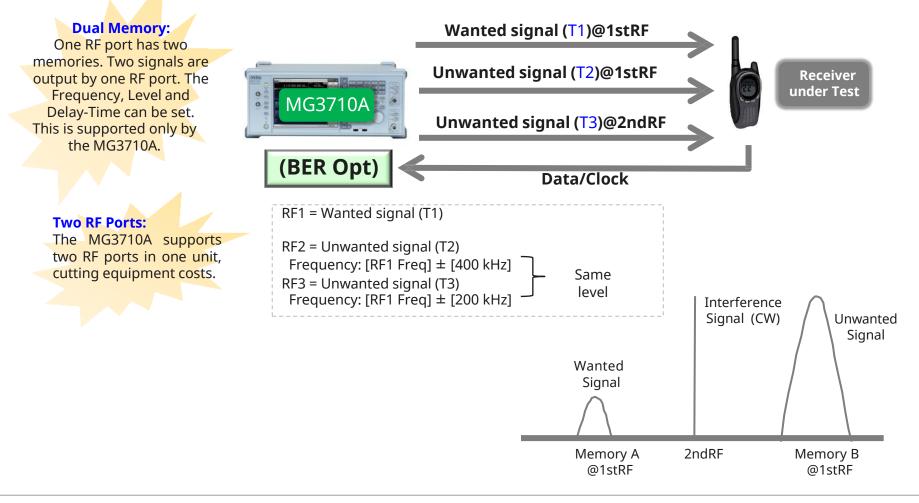
Spurious response rejection

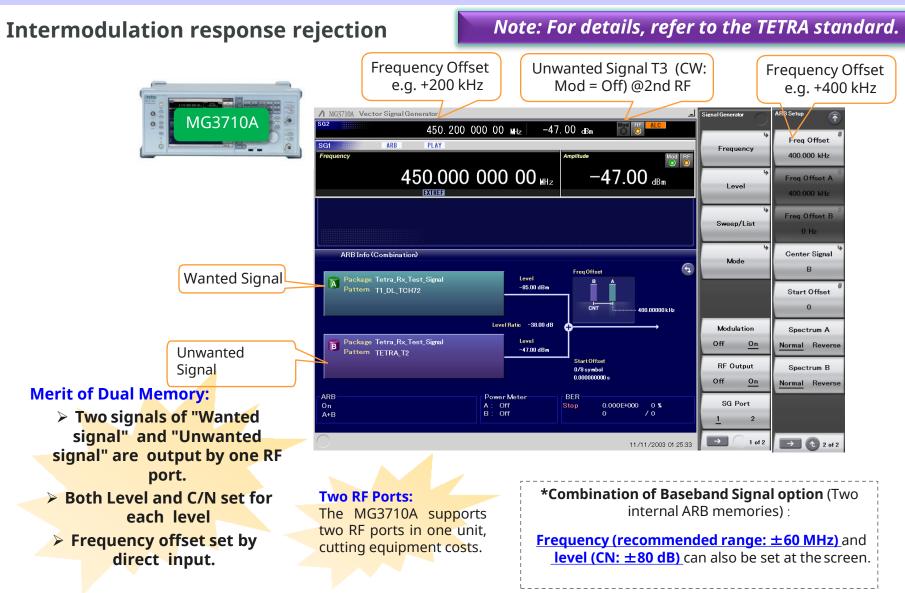
Note: For details, refer to the TETRA standard.

Limits

For MS receiver

Test Type	Channel type	Logical channel	Propagation condition	Signal level (dBm)	Interferer level (dBm)	Spec. BER or MER %	Test limit BER or MER %	Minimum sample size
Spurious response	1	TCH/7,2	STAT	-109	-45	3,5	4,270	5 000


For BS receiver


Test type	Channel type	Logical channel	Propagation condition	Signal level (dBm)	Interferer level (dBm)	Spec. BER or MER %	Test limit BER or MER %	Minimum sample size
Spurious response	7	TCH/7,2	STAT	-112	-45	3,0	3,66	5 800

Intermodulation response rejection

Note: For details, refer to the TETRA standard.

Measures the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of two or more unwanted signals with a specific frequency relationship to the wanted signal frequency.

Intermodulation response rejection

Note: For details, refer to the TETRA standard.

Limits

For MS receiver

Test Type	Channel type	Logical channel	Propagation condition	Signal level (dBm)	Interferer level (dBm)	Spec. BER or MER %	Test limit BER or MER %	Minimum sample size
Inter-modulation	1	TCH/7,2	STAT	-109	-47	3,5	4,270	5 000

,	
For BS receiver	1
FOI DS TECEIVEI	

Test type	Channel type	Logical channel	Propagation condition	Signal level (dBm)	Interferer level (dBm)	Spec. BER or MER %	Test limit BER or MER %	Minimum sample size
Inter- modulation	7	TCH/7,2	STAT	-112	-47	3,0	3,66	5 800

[Appendix] How to Create Faded Pattern 1/2

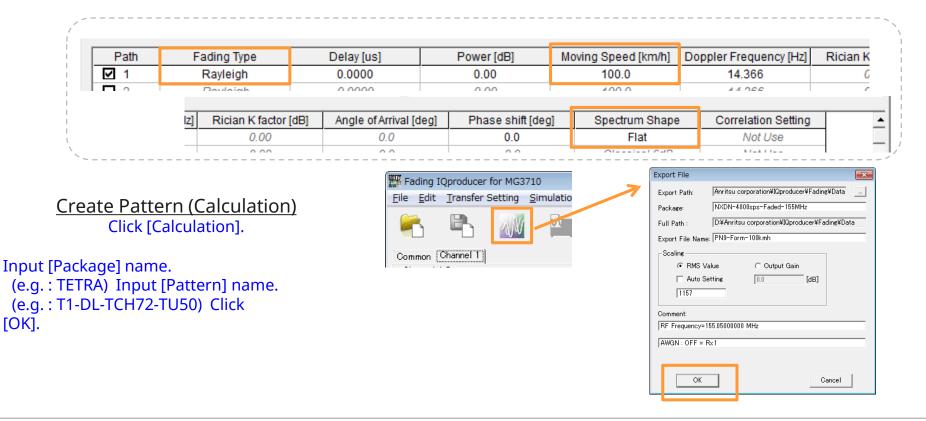
<u>Start Fading IQproducer</u> [IQpro] Click [General Purpose] tab. Click [Fading] icon.

Menu	
(7)	SG2 Frequency Sweep AM NO
F1	SG1 Level Mode FM Aux
F2	IQpro Load Select Pulse Utility

System(Cellular)	System(Non-Cellular)	General Purpose	Simulation
I			1
TDMA	Miltil+iPost	IST. III	377 J
TDMA	Multi- Carrier	Fadir T	ng

<u>Set Fading Parameter</u> (<u>TxAntenna Configuration</u>) Click [Reference]. Select [T1_DL_TCH72] . (C:¥Anritsu¥MG3710A¥User Data¥Waveform ¥TETRA) on MG3710A HDD Set RF Frequency (e.g. : 450 MHz)

> Create different patterns for each evaluated frequency

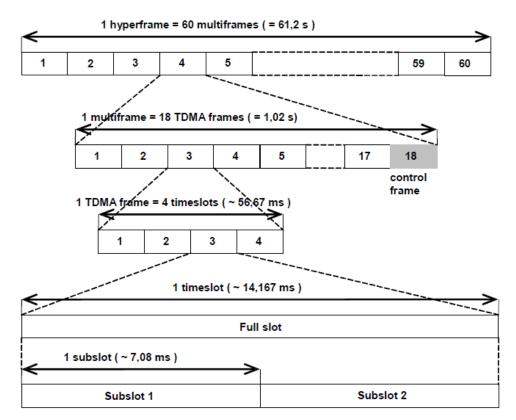

Á M		
Tx Antenna Config	uration	
Tx Antenna 1		
Input File :	T1_DL_TCH72.wvi	Reference Delete
RF Frequency :	450.0000000	[MHz]
Sampling Rate :	0.14400000	[MHz]
Bandwidth :	0.02430000	[MHz]
Repetition :	1	🔲 Maximum
Pattern Length :	521220.0000000	[ms]

[Appendix] How to Create Faded Pattern 2/2

Set Fading Parameter (Channel condition)

Click [Channel 1] tab. Set [Fading Type] = Rayleigh. Set [Moving Speed] = 50 km/h or 200 km/h.

	ducer for MG3710							- • •
ile <u>E</u> dit <u>T</u> rar	isfer Setting <u>S</u> ii	mulation						
Commo Chann				SCDF SCDF	<u>/\</u>		<u>بر</u>	
-Channel I rara				Power Delay	Profile			
Input File :	PN9-Form-Sta	ticavvi		0.00 -				
Fading Profile :	Default Setting			20.00 -				
RF Frequency	155.05000000		[MHz]	-20.00 -				
Sampling Rate	0.03840000		[MHz]	-60.00 -				
Bandwidth :	0.00576000		[MHz]	-80.00 -				
Pattern Length	20440.0000000		[ms]	0.000	0.200	00 0.400	10 0.6000 Delay[us]	0.8000 1.0000
								Full Scale
Path	Fading Type	De	lay [us]	Power [dB]	Movin	g Speed [km/h]	Doppler Frequency	[Hz] Rician K factor [dB 🔺
☑ 1	Rayleigh		.0000	0.00		100.0	14.366	0.00
n 2	Daulaiah	1	0000	0.00		400.0	4.4.966	0.00


Appendix

TETRA PHY Specifications

TS100 392-2

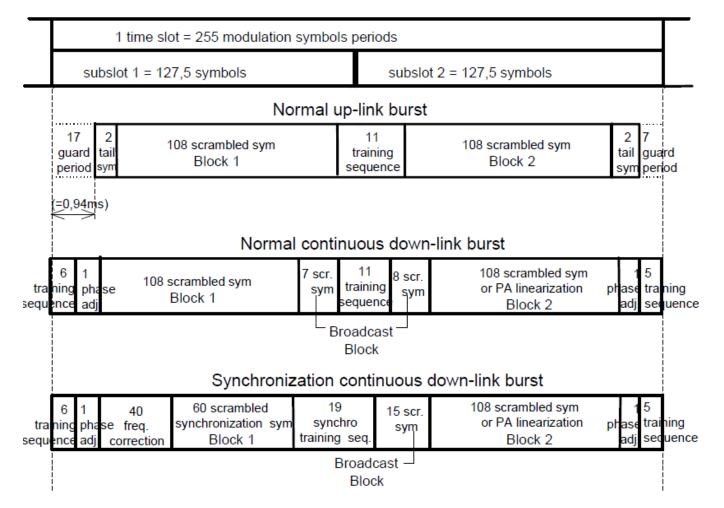
Note: For details, refer to the TETRA standard.

4.5.2 Hyperframes, multiframes and frames

	Number of symbols					
	Phase modulation	QAM				
Slot	255	34				
Subslot	127,5	17				

TS100 392-2

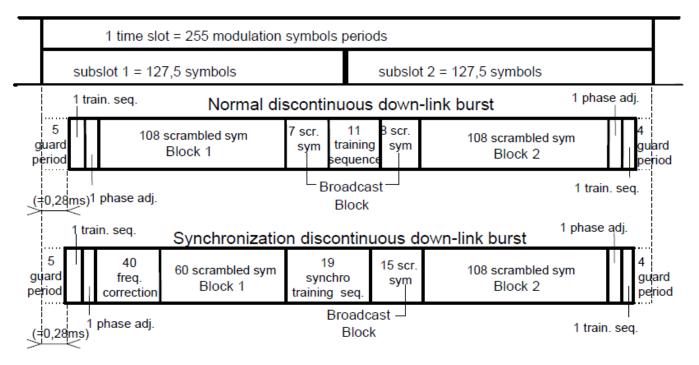
Note: For details, refer to the TETRA standard.


9.4.4 Type of bursts for phase modulation

subslot 1 = 127,5 symbols					subs	lot 2	2 = 127,5	symbol	S					
	17 guard period ,94 ms)	2 tail sym	42 scrambled	up-link 15 ext'd trng sequence	burst (SS 42 scrambled sym	2 tail sym	7.5 guard period (~0,42 ms)	17 guard peri	2 diail sym	Contro 42 scrambled sym	UD-link 15 ext'd trng sequence	burst (SS 42 scrambled sym	2	7.5 guard
		Lin	earizatior 120 ramping lineariza (~ 6,6	& PA tion	t burst (S	SN1)							

TS100 392-2

Note: For details, refer to the TETRA standard.


9.4.4 Type of bursts for phase modulation

TS100 392-2

Note: For details, refer to the TETRA standard.

9.4.4 Type of bursts for phase modulation

TS100 392-2

Note: For details, refer to the TETRA standard.

Table 1: Summary of logical channels characteristics.

Logical Channel	Direction	Physical resource	Category	Evaluated performance
AACH	Downlink	30 initial bits of downlink timeslot	Signalling	MER
SCH/HD, BNCH and STCH	Downlink	Half slot	Signalling	MER
SCH/HU	Uplink	Half slot	Signalling	MER
BSCH	Downlink	Full slot	Signalling	MER
SCH/F	Uplink / Downlink	Full slot	Signalling	MER
TCH/S	Uplink / Downlink	Full slot	Traffic (Speech)	MER, residual BER
TCH/7,2	Uplink / Downlink	Full slot	Traffic (Data)	BER
TCH/4,8 (N=1, 4, 8)	Uplink / Downlink	Full slot	Traffic (Data)	BER
TCH/2,4 (N=1, 4, 8)	Uplink / Downlink	Full slot	Traffic <mark>(</mark> Data)	BER

The $\pi/4$ -DQPSK normal training sequence 1 shall be:

(n1, n2, ..., n22) = (1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0)

The $\pi/4$ -DQPSK normal training sequence 2 shall be:

(p1, p2,..., p22) = (0,1, 1,1, 1,0, 1,0, 0,1, 0,0, 0,0, 1,1, 0,1, 1,1, 1,0)The $\pi/4$ -DQPSK normal training sequence 3 shall be:

(q1, q2,..., q22) = (1,0, 1,1, 0,1, 1,1, 0,0, 0,0, 0,1, 1,0, 1,0, 1,1, 0,1)The extended training sequence for $\pi/4$ -DQPSK shall be:

(x1, x2, ..., x30) = (1,0, 0,1, 1,1, 0,1, 0,0, 0,0, 1,1, 1,0, 1,0, 0,1, 1,1, 0,1, 0,0, 0,0, 1,1)

The synchronization training sequence shall be:

(y1, y2,..., y38) = (1,1, 0,0, 0,0, 0,1, 1,0, 0,1, 1,1, 0,0, 1,1, 1,0, 0,0, 1,1,1, 0,0, 0,0, 0,1, 1,0, 0,1, 1,1)The contents of the $\pi/4$ -DQPSK tail bit field shall be:

(t1, t2, t3, t4) = (1, 1, 0, 0)

The frequency correction field shall contain 80 bits:

$$(f1, f2, \dots, f8) = (1, 1, \dots, 1)$$

 $(f9, f10, \dots, f72) = (0, 0, \dots, 0)$
 $(f73, f74, \dots, f80) = (1, 1, \dots, 1)$

